
AD-A220 462 MASTER OPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE
ia. It0'uKT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

IUne I aq q fl i =t

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAI AAIUTY OF REPORT

2b. 0ECLASSIFICATiONI DOWNGRADING SCHEDULE Approved for public release; .)
distribution unlimited. ,

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S " -. j

,A "
6.. NAME OF PERFORMING ORGANIZATION Lb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Center of Excellence in AI (I Applcable)University of Pennsylvania U. S. Army Research Office

6c. ADDRESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code)
Dept. of Cornuter & Information Science P. 0. Box 12211
200 S. 33rd treet
Philadelphia, PA 19104-6389 Research Triangle Park, NC 27709-2211

ga. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZAkTIONI (if' apl iabe)

U. S. Army Research Office Ji L03-49- a -0031
Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM I PROJECT TASK WORK UNIT

Research Triangle Park, NC 27709-2211 ELEMENT NO. . NO. ACCESSION NO-

11. TITLE (Include Secunty Cawssffcaton)

Real Time Inverse Kinematics with Joint Limits and Spatial Constraints (MS-CIS-89-09)

12. PERSONAL AUTHOR(S)
Jianmin Zhao and Norman I. Badler

13a. TYPE OF REPORT ,13b. TIME COVERED j14. DATE OF REPORT (Year. MAontmh Day) iS. PAGE COUNT
Interim technical I FROM TO I January 1989 1 21

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of the auth r(q;),and should not be const as an qfficial De artment of the Army position,
17. COSATI CODES 18. SUBJECT TERMS (Cont ne on rer if necenary and identify by block number)

FIELD GROUP SUB-GROUP

Human figure animation

'9. ABSTRACT (Continue on reverse if necematy and identffy by block number)

') A configuration of an articulated figure of joints and segments can sometimes be specified as spatial constraints.
Constrained parts on the articulated figure are abstracted as end effectors, and the counterparts in the space are
abstracted as goals. The goal (constraint) can be as simple as a position, an orientation, a weighted combination of
position and orientation, a line, a plane, a direction, and so on, or it could be as complicated as a region in the space.
An articulated figure consists of various segments connected together by joints has some degrees of freedom which are
subject to joint limits and manual adjustment. This paper presents an efficient algorithm to adjust the joint angles
subject to joint limits so that the set of end effectors concurrently attempt to achieve their respective goals. Users
specify end effectnrs and goals: the program computes a final configuration in real time in the sense that actions
appear to take no longer than actual physical activities would. If it is impossible to satisfy all the goals owing to
the actual constraints, the program should end up with the best possibility according to the users' assignment of
importances to each goal.

20. DISTRIBUTIONiAVAILASIUTY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDjUNUMITED E3 SAME AS RPT. (:0 TIC USERS Unclassified

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEP14ONE lude Are. CO) c. OFFICE SYMBOL

DO FORM 1473, &4 MAR 63 APR edition may be used until exhausted. SECURITY aAssICAnON OF THIS i&E

All other editions are obsolete. U L IFIED

REAL TIME INVERSE
KINEMATICS WITH JOINT

LIMITS AND SPATIAL
CONSTRAINTS
Jianmin Zhao and
Norman I. Badler

MS-CIS-89-09
GRAPHICS LAB 27

by

CcPEC,

4

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104 Accession For

NTIS G", IJanuary 1989 DjTIC T',

By
_Distri ut i oz/
Avail-,-i ity Code

P;, ii and/or
Dist Special

Acknowledgements: This research is partially supported by Lockheed Engineering and
Management Services, the Pennsylvania Benjamin Franklin Partnership, NSF grants
MCS-82-19196-CER, IST-86-12984, DMC-85-16114, IR184-10413-AO2 and ARO grants
DAA29-84-9-0027, DAAG29-84-K-0061 including participation by the U.S. Army Human
Engineering Laboratory.

Real Time Inverse Kinematics with Joint Limits and

Spatial Constraints

Jianmin Zhao and Norman I. Badler

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104-6389

January 9, 1989

Abstract

A configuration of an articulated figure of joints and segments can sometimes be specified as

spatial constraints. Constrained parts on the articulated figure are abstracted as end effectors,

and the counterparts in the space are abstracted as goals. The goal (constraint) can be as simple

as a position, an orientation, a weighted combination of position and orientation, a line, a plane,

a direction, and so on, or it could be as complicated as a region in the space. An articulated

figure consists of various segments connected together by joints. Each joint has some degrees

of freedom which are subject to joint limits and manual adjustment. This paper presents an

efficient algorithm to adjust the joint angles subject to joint limits so that the set of end effectors

concurrently attempt to achieve their respective goals. Users specif, no sffectors and goals:

the program computes a final configuration in real time in the sense tha. ions appear to take

no longer than actual physical activities would. If it is impossible to satisfy all the goals owing

to the actual constraints, the program should end up with the best possibility according to the

users' assignment of importances to each goal.

1 Introduction

The ultimate objective of computer animation is to create various motions using computers. Often.

we are given motions ,-r sorw particula p-;nt: :r "ic ' gure, and try to solve *he whole

motion. The specifications on those particular points are usually called constraints.

Badler et al introduced position constraints (1]. They recursively solved for joint angles of

articulated figures to satisfy multiple pcsition constraints. But in that paper, orientation constraints

and joint limits were not dealt with. Moreover, the sequential nature of the tree traversal often led

to realizable but awkward solutions.

Girard and Maciejewski used pseudo-inverse of Jacobian matrix to solve spatial constraints [8].

The main formula is

A9 = J+Ar

where A9 is the increment of the joint angle vector, Ar is the increment of the spatial vector and

J+ is the pseudo-inverse of the Jacobian or/0. If we use a large step size, the method is actually

the well known Newton-Raphson method, which is not globally convergent and often needs some

special handling (e. g. hybrid method [10]). Or we may use a sufficiently small step size, which

was suggested by Girard and Maciejewski in [8]; but this requires excessive iterations. The inverse

operation is usually very expensive (say, 0(n 3)); and they did not deal with joint limits.

Witkin et al used energy constraints [16]. The energy function is the sum of all constraints

including position and orientation constraints. Constraints are satisfied if and only if the energy

function ic zero. Their method is to find the integration of the differential equation:

d&(t)/dt = -VE(O)

where 0 is the parameter vector, E is the energy function of 9, and V is the gradient operator.

The motion is actually driven by the conservative force which serves as the constraint force derived

from VE, and is smooth in the sense that the parameter vector 0 is a smooth function of time t.

The energy function may incorporate the constraints on parameter space (joint angle space), but

it treats the parameter limits (joint limits) as penalty functions rather than directly. Although the

penalty function method is very effective in dealing with general constraints, we have a much more

efficient method to deal with linear constraints

Barzel and Barr used dynamic constraints to solve for the motion [2]. In their approach.

deviation functions were introduced such that the constraints are met if and only if the deviation

funct;-,, is zero. They solved for constraint forces such that the deviation function decreases

exponentially in terms of time t under cxtcrnal furce: and conrtr-int force:. J his m'Qod gives

very attractive motion because it considers not only constraint forces but also external forces such

2

as gravity. The constraint force is not necessarily a conservative force; actually it is derived from the

deviation function. Joints can be accomplished by point-to-point constraints with their approach.

But they did not consider joint limits.

In Barzel and Barr's method, they use the parameter r to control the speed (not computational

speed) by which the constraint is to be met. This parameter serves as a weight. So to maintain

joints as point-to-point constraints, one must assign very small r to those constraints. But the time

step of the computation will then be dominated by those small r.

The methods of both Witkin et al and Barzel et al solve the problem in O-t space, and hence

are very expensive comparatively. To be more efficient, one often chooses adaptive steps for time

t. But the step of t is mainly decided by the spatial improvement. So if we are given a spatial

path (in Barzel and Barr's paper [2], the deviation function actually defines a spatial path in terms

of time t), we can split the spatial path into sufficiently small segments and get a smooth spatial

trajectory. Moreover, often we just want to know some final configurations in an interactive manner,

such as making a human figure reach somewhere, look at something, or get into a constrained

environment. In human or robot reach space analysis, we may want to know whether or not some

spatial constraints are satisfiable in determining the reachable space. If hundreds of reach points

are involved, the speed of the algorithm is very crucial. In key frame animation, we create some key

frames and let intermediate pictures be interpolated either using function interpolation techniques

[15] or motion interpolation techniques using optimal control theory [3, 17]. In many situations,

especially in human animation, joint limits are very important. In this paper, joint limits are not

special cases but are fundamental to the procedure. An efficient way to deal with joint limits during

inverse kinematic positioning is an important concern.

This paper is devoted to solving for spatial constraints subject to joint limits. We solve the

problem in 0 space (joint angle space or parameter space). It is very fast. For example. a situation

with four concurrent goals, involving sixteen degrees of freedom, is achieved in only 2.6 seconds

(see Figure 4).

2 The Method

The basic geometric entity being manipulated is the articulated figure. The data structure of the

articulated figure we used is created by the Peabody language developed at Computer Graphics Lab

3

at University of Pennsylvania [4]. A Peabody figure is composed of segments connected together

by joints '. Each joint has several degrees of freedom subject to joint limits and users' adjustment.

Using graph terminology, the data structure of the Peabody figure is a tree, where segments are

nodes and joints are edges. An example of human body model is illustrated in Figure 1.

A spatial constraint involves two parts. The constraint parts on the figure are called the end

effectors and their counterparts in space are called the goals. In certain contexts, goals and con-

straints are synonymous, For example, a position goal is satisfied means that a position constraint

is satisfied.

Associated with each goal, there is a non negative potential function P such that it is zero if

and only if the goal is satisfied. Since we are only concerned about the spatial constraint, and the

spatial position and orientation are determined by a point and two vectors (a coordinate frame has

three basis vectors, but we can only place two of them in the space), the potential P is, in general,

the function of a position and two unit vectors, say,

P = P(r, vi, v 2)

where r is the position vector, and v1 , v 2 are two unit vectors. Of course, we cannot place two unit

vectors arbitrarily. Their angle must be preserved. We call it the potential because it depends only

on spatial variables. To form a constraint, we just plug into P the appropriate variables of the end

effector which are in turn the functions of the joint angles, i. e.

P(O) = P(r(O), v,(0), v 2(0)) (1)

where 0 is the vector of the joint angles. Suppose we have m constraints, then the overall potential

is defined as

P(O) = , w1P,(o) (2)

where w, are weights put on the ith constraint, and Pi is the potential associated with the ith

constraint. Clearly all the constraints are satisfied if and only if P is zero. In general. constraints

are not satisfied simultaneously. Our task is to minimize the potential function subject to joint

limits. In most cases, joint limits are described by linear equalities or inequalities, such as lower

'Actually, Peabody figures are graph-structured rather than being limited strictly to trees. For this discussion.

however, the tree structure of the human or robot model suffices.

4

head

neck

left shoulder thorax 1 ,right shoulder/

(left upper arm) lumbar 3 r ight upper arm)

(left lower arm) lumbar 2 ight lower arm)

(leftand (lumbarl 1 right hand

left upper leg right upper leg

(left lower leg) right lower leg)

(left foot)(right foot

Figure 1: An example of a Peabody human figure model

5

limits and upper limits. So the technique of nonlinear programming with linear constraints is used.

Formally, the problem is

{ minP(O)

s. t. aTO = bi, i = 1, 2, 1 (3)

aTO <_bi,i=l+1,+2,...,k

where ai, i = 1, 2,..., k are n-dimensional column vectors. The equality constraints allow for linear

relations among the joint angles. The lower limit Ii and upper limit ui on 9i contribute to the set

of inequality constraints on 0 as, respectively:

-Oi <_ -1i

Oi :< Ui

The algorithm we adopted to solve this problem is Davidon's variable metric method with the

BFGS (Broyden, Fletcher, Goldfarb, Shanno) approximate inverse Hessian matrix update formula

(to know its merits, see, e.g. [6, 9, 14]) and Rosen's projection method to handle linear constraints

[13, 7]. Under some conditions, the method is superlinear convergent [12] with each iteration of

complexity of O(n 2 + m) where n is the total number of joint angles involved, and m is the number

of constraints. The method is robust and globally convergent. Of course, generally, it converges

to local minima, or rather, Kuhn-Tucker points (constrained stationary points), rather than global

minima.

To use the variable metric method, we need to compute the gradient of the objective function

VoP. From the definition,
M

V oP = w:voP: (4)

The definition of VoP is

VoP aP aP !p)T7a-7 'M "'"

where n is the dimension of the vector 0.

Usually, the number of joint angles involved in the constraint problem n is less than the total

number of joint angles in the figure we are dealing with, and the number of joint angles involved in

a single constraint is much less than n. So it is both computationally economical and conceptually

uniform to treat individual constraints separately and then assemble them together to get VP.

6

e tor segment

01

Figure 2: Constraint Chain

3 Single Constraints

Since our data structure of the figure is like a tree (see Figure 1), an end effector of a constraint

only depends on those joints which sit along the path from the root of the figure tree to the segment

where the end effector belongs [1]. Let's call this path the constraint chain. The constraint chain is

illustrated in Figure 2, where a joint with multiple degrees of freedom is separated conceptually into

several joints with one degree of freedom. The length of the constraint chain is the total number

of joints (or joint angles) along the chain. In Figure 2, it is n. But do not confuse this n with that

in the last section. We are only dealing with one constraint in this section. Because all the joints

of the human body are revolute joints, we discuss here only revolute joints. But the translational

joints can be treated similarly. Let the ith joint angle along the chain be Oi, the axis of this joint

be u which is a unit vector, the position vector of the end effector be r, the position vector of the

ith joint be ri, and v be an arbitrary unit vector attached to the end effector segment. r and v are

functions of the Oi's. Actually, they can be computed by cascaded multiplication of transformation

matrices. It is not hard to see that (see [18])

Or
- = u x (r - ri) (5)

Oi
- = uXv (6)

00i

These formulas are useful in deriving the gradient of the potential function.

Let the potential associated with this constraint be P(r. v1 , v 2), and g(O) be VP. It is clear

that

g(O) = VeP

= ,p TV P+(2)TVv P
00 ao00

I r

VP (7)

where ar is a 3 by n matrix:

and imilar definition for L- and wh;-h can be easily computed from (5) and (C), and VrP,

V 7 P and Vv 2P are gradients of P with respect to r, vi and v2 respectively, for example,

VrP (F.

where r. is the x component of the vector r and similar notation for y and z components, VP is

the gradient of P with respect to spatial variables, or

(VrP
VP VvlP

Vv 2 P

Notice that VP is independent of the structure of the articulated figure.

The potential P can be very simple, as will be seen in the following, but, on the other hand,

it could be very computationally expensive. For instance, to constrain a portion of the figure to

some region, we may create a potential function such that it is zero in the region and enough big

outside. But to use our method, we need the gradient of the ,:nction. The smooth transition

between the two regions often requires some integral, and this integral usually needs comparatively

costly numerical treatment. Therefore, in evaluating the cost to compute P(9) and g(O). we do not

count the cost of function P and 7'P. Under this convention and from (5), (6) and (7). we see that

g(O) is almost as expensive as P(O) is. which is dominated by n multiplications of 4 by 4 matrices.

or O(n).

Some simple but useful constraints follow.

3.1 Position Goal

The goal is a point in the 3-dimensional space. Let that point be p, and the end effector is also

a point which sits on the last segment of the constraint chain. Let thlb point be r (see Figure 2).

The potential function is:

P = (p - r)2 (8)

and the gradient is:

VrP = 2(r - p) (9)

Vv ,P and V P ai zero.

3.2 Orientation Goal

The goal is -n orthonormal coordinate frame in space. The origin of the frame is irrelevant. Let

the goal frame be :

{p; xg, Yg, Zg}

where p is the origin and x., y9 , z. are the orthonormal vectors. Accordingly, the end effector is an

orthonormal coordinate frame attached at t'ie last segment of the constraint chain. Let this frame

be:

{r; x., y., z,}

The potential function could be:

P = (xq - X.)2 + (y9 - Ye) 2

But this function implies that one length unit is as important as about one radian in angle. To

enforce one length unit compatible with d degrees in angle. we need to multiply the previous P by

Cd such that
1 2ir- d
cd 360

i. P.

Cd = 360/(2r4) (10)

To be more general, our potential function is. then.

P = Ce(xg - x) 2 + c2(yg - ye) 2 (1)

I93d

The gradient is:

Vx.P = 2CL(x - xg) (12)

Vy.e P 2c(y-yg) (13)

Some orientation, say y direction, could be suppresed by setting cdy to 0. This is useful, for

example, to constrain a person holding a cup of water to keep the cup upward while attaining other

constraints.

3.3 Position/Orientation Goals

Position and orientation goals can be treated separately, but sometimes it is convenient to combine

them together as a single goal. The goal and end effector are like that in the orientation goal, but

the origins of the frames are important here. The potential function for position/orientation goal

is:

P = wp(p - r) 2 + wocd(xg - xe) 2 + wocd(y 9 - ye)2 (14)

where wp and w. are weights put on position and orientation respectively such that

wP + W0 = 1

The gradients VrP, Vx, P and V y. P are obvious from Sections 3.1 and 3.2.

3.4 Direction Goals

The goal is a point in space, say, point p, but the end effector is a vector attached to the end

effector segment. Let the starting point of that vector which is fixed on that segment be r. and the

vector be v (see Figure 2). This constraint is to force the vector v to point toward the point p.

This is useful when we want to make a body look in some direction or look at a certain point. The

potential function is:

p- r V)2 (15)t ip - rni
where cd is defined in (10) and 11 is the norm of. The The gradient is:

VrP = 2c(p - rl 2v -(p - r).v(p - r)) (16)

VvP= -2c(p-r v) (17)

10

3.5 Line Goals

The goal is a line and the end effector is a point r. This constraint forces the point to go to the

line. Let the line b# defined by point p and a unit vector v such that the parametric equation of

the line is

p + tv

The potential function is:

P = ((p - r) - (p - r).vv)2 (18)

and the gradient is:

VrP = 2(v.(p - r) v - (p - r)) (19)

3.6 Plane Goals

The goal is a plane and the end effector is a point r. This constraint forces the point to go to the

plane. Let a point on the plane be p and the normal of the plane be v.

The potential function is:

P = ((p - r).v)2 (20)

and the gradient is:

VrP = -2v.(p - r) v (21)

4 Assembly of Local Gradient to Global Gradient

We have dealt with various constraints in Section 3. Of course, the types of constraints are not

limited in the Section 3; they are only some examples. The problem now is to assemble all the

information about individual constraints to form one constraint.

Suppose we have m constraints. The ith constraint has constraint chain of length ni and the

joint angles

E) 0-.02. .. },' (22)

Since constraint chains are from a single figure tree, Oi's may overlap with each other. Let
nl

eUe
= {o02, On, (23)

11

The giobal index of 0 has nothing to do with the topological relation within joint angles, but the

local index does. They are numbered from the starting point of the constrain' chains to the end

effectors. For each constraint, we have a mapping from local index to global index:

Ms: {1,2,...,ni} - {1,2,...,n} (24)

such that 0' is 0mqj) in the global index. It is easy to compute P(0) from Pi from Equation 2.

We just need to take care of g(0) = VoP. The local gradient for each constraint can be obtained

from Section 3. Notice that in that section the derivatives are with respect to local 0i's contrary to

global 0 in (4). g(0) in (7) is a ni-dimensional vector while V 0 P in (4) is a n dimensional vector.

Let

g = (gi '".. ')T

be the local gradient of the ith constraint, and

g= g1 92 ""g-)

be the global gradient. We can simply assemble g from g"s as follows:

Step 1. gj - 0, for j = 1,2,...,n

Step 2. Fori=ltomdo

gm,(j) - gM,(j) + wigi, for j = 1,2,..., ni

4.1 The Algorithm for Nonlinear Programming Problem

We are now ready to solve the problem (3). From Section 3 and Section 4, we can very effectively

compute P(O) and g(0) = VeP(0) in O(n + m). There are many algorithms available to solve the

problem. Among them, the variable metric method (or conjugate gradient method) is considered

most powerful for unconstrained problems with a smooth objective function. Rosen's projection

method is very effective in treating linear constraints [13]. Goldfarb combined DFP's method (a

variable metric algorithm) [5] with Rosen's projection method [7]. But after that, the variable

metric method was much improved. BFGS' improvement has been considered most effective. One

of the motives of the improvement is to try to get best conditioning of the approximate inverse

Hessian matrix [141. The algorithm we are presenting here is the combination of the BFGS method

and Rosen's projection method. We follow very closely Goldfarb's paper [7].

12

Without loss of generality, we assume that all the a,'s in (3) are unit vectors. We say that point

0 is feasible if it satisfies all the equalities and inequalities in (3). The ith constraint is said to be

active at 0 if aTO = bi. So an equality constraint is always active at a feasible point. We assume

further that at any point, the ai's for active constraints are linearly independent. Let Aq denote a

n by q matrix derived from lumping together q vectors from ai's, i.e.,

Aq(a a 2 .. aiq)

In the following description of the algorithm, the superscript i denotes the ith iteration. The

algorithm folows.

Step 0. Let 00 be a initial feasible point, and H° a initially chosen n by n positive definite sym-

metric matrix. Suppose there are q constraints active at point 00. Aq is composed of these

aj's and first I columns of Aq are {a: i = 1,2,...,1}. H ° is computed by employing (27) q

times. go
-0°).

Step 1. Given 0 , g' and H', compute H.g' and

a (ATAq) 'A T9

If 9' = 0 and aj < 0,j = I + 1, 1 + 2,. .. , q, then stop. 0' is a Kuhn-Tucker point.

Step 2. If the algorithm did not terminate at Step 1, either !IHg'Jl > max{0, 2 -1/2o
1/2 -/2 - 1/2, n

IHrg'1j < 4a,, : ;l/2, where it is assumed that aqaq/ 2 > ¢a/ ,i = I+ 1,...,q- 1 and
where aii is the ith diagonal element of (ATAq) - . (They are all positive, see [7])

If the former holds, proceed to Step 3.

Otherwise, drop the qth constraint from Aq and obtain Hq_1 from

Hq- = Hq + a 9_a (25)

where Pq_.I = I- A_1 (AT .. Aq_1) q) - , is a projection matrix, aiq is the qth column of Aq.

and Aq- is the n by q - I matrix got from taking off the qth column from ..

Let q - q - I and goto Step 1.

13

Step 3. Let the search direction s' - -H'g' and compute

bj - ajTO

, J = aTsi ,j=q+l,q+2....k

Ai = min{fAi > 0}

Using any line search technique to obtain biggest possible -/i such that 0 < - i _ min{1, A'},

and { P(Oi + -yis) < P(O) + 617i(gi)Tsi (26)

g(O/ + ts i)Tsi > 62(gi)Tsi

where 61 and 62 are positive numbers such that 0 < 61 < 62 < 1 and 61 < 0.5. Let 0i+' -

09 + 7Iis' and gi+l = g(Oi+).

Step 4. If y' = A', add to Aq the aj corresponding to the min{Aj} in Step 3. Then compute

H' a T HiH+l H q a q (27)
q+1 -q aTHia-

I7 q.

Set q -- q + 1 and i 4- i + 1 and goto Step 1.

Step 5. Otherwise, set a' = y's' and yi g +I - gi and update H' as follows:

If (a'i)Tyi > (yi)T H'Yi then use the BFGS formula:

H'+' = H' + ((1 + (,)iy)(O)T - i()T H' - H' i(&)T)/(o,)TYi (28)

q q ~(a'i) T Y iq

else use the DFP formula:

Hq+y + i(oi)T (yH)q Hq (29)q + = a T +()ri iy)Tri iy

Set i - i + 1 and goto Step 1.

The inexact line search strategy (26) in Step 3 was proposed by Powell [11) and 6 = 0.0001 and

62 = 0.5 were suggested in [11]. Since s' is a descent direction. i. e. . (gi)Ts' < 0. this strategy

guarantees that the function value is decreased and (ari)Ty
i > (I - 62)I(gi)Tsil > 0. Because, as

we pointed out in Section 3, the gradient g(O) is almost as expensive as the function P(6). we used

cubic Hermite interpolation method in the line search. We feel it is very effective.

The switch between the BFGS formula and the DFP formula was suggested by Fletcher [6].

14

Notice that all matrix multiplications are performed as a n by n matrix and a vector, or a n

by I matrix and a 1 by n matrix. For example, matrix multiplication IHaaTHI can be grouped
as(i . i(H .)T.T

as (Hqa 3)(Ha . The inverse of a matrix might take much time, but, fortunately, for (AT.4q) - 1 ,

we have a very effective recursive relation of (ATAq) - ' to (A'+Aq+l) - ' and (A TAq_ - ' (see

[7] for details). So the complexity of one iteration is O(n 2).

The correctness of the algorithm was proved by Goldfarb in [7] for exact line search in Step 3

and the DFP formula in Step 5. But it is not hard to follow the proof in [7] to show the correctness

of our algorithm. Be careful that [7] was for maximum while our algorithm is for minimum. We

tried both the BFGS and DFP formula and found that BFGS is really better. Shanno compared

them in [14] for many functions, and the results are generally in favor of the BFGS formula.

5 Some Remarks

" We assumed in Section 3 that the constraint chain went from the root of the figure tree to

some end effector. It is possible and sometimes useful that the chain goes from a specified

joint which is nearer to the root than the end effector is. But then we must take care of

those joints which are not in this constraint chain but are in another chain and affect this

end effector. We must add those joints to this chain.

" Suppose some joints are active and some joints are inactive, we can add joints to the constraint

chain dynamically according to their activeness.

" The obstacle avoidance problem can also be treated here. But we do not look for a path

which does not touch the obstacle. Instead, we are concerned about those parts which are

pulled by the end effector, since, usually, the end effector is assigned a goal which does not

intersect with the obstacle. For example, we may want the hand to get to some place while

keeping the elbow away from the obstacle. We can create a potential function around the

obstacle and assign this goal to the elbow.

I5

Figure 3: Standing Body

6 Implementation

We have implemented the multiple goal positioning in the Jack interactive environment (4]. By

positioning, we mean to satisfy spatial constraints. It is fast enough to be used in an interactive en-

vironment. It has been used for simple positioning, or for creating key frames for later interpolation

by spUne functions or by dynamical simulations.

The examples given here were run using Jack on a Silicon Graphics IRIS 4D/70GT. Figure 3 is

an initial configuration. From that position, we use 4 position goals, 2 for elbows and 2. for hands,

to get the posture as in Figure 4. Two constraint chains are from shoulders to hands, and another

two from shoulders to elbows. It involves 16 degrees of freedom and takes 2.6 seconds.

Figure 5 has two goals for two hands. The goals are on the bar which are not reachable. It

involves 31 degrees of freedoms and runs in 13 seconds.

Figure 6 is a person holding a box. To deliver the box to the goal shown on the figure, we used

a position/orientation goal to keep the box from tipping upside down. Position and orientation

have the same weight. 5 degrees of angle is made as important as 1 unit of length. The result is in

Figure 7. It involves 10 degrees of freedom and takes 2 seconds.

In conclusion, this multiple goal achievement algorithm is a significant improvement over other

inverse kinematic procedures based on its generality, speed, and fundamental use of joint limits and

16

Figure 4: Four position goals: 2.6 seconds

Figure 5: Bending over a bar: 13 seconds

17

Figure 6: A person holding a box

Figure 7: To deliver a box: 2 seconds

18

spatial constraints. It is a major convenience in the interactive manipulation of articulated figures

for positioning, reaching, and viewing tasks.

7 Acknowledgments

This research is partially supported by Lockheed Engineering and Management Services, Pacific

Northwest Laboratories B-U0072-A-N, the Pennsylvania Benjamin Franklin Partnership, NASA

Grants NAG-2-426 and NGT-50063, NSF CER Grant MCS-82-19196, NSF Grants IST-86-12984

and DMC85-16114, and ARO Grant DAAG29-84-K-0061 including participation by the U.S. Army

Human Engineering Laboratory.

References

[1] Norman I. Badler, Kamran H. Manoochehri and Graham Walters, Articulated Figure Posi-

tioning by Multiple Constraints, IEEE CG&A, June 1987, pp. 28-38

[2] Ronen Barzel and Alan H. Barr, A Modeling System Based on Dynamic Constraints, ACM

Computer Graphics, 22 (1988), No. 4, pp. 179-188

[3] Lynne Shapiro Brotman and Arun N. Netravali, Motion Interpolation by Optimal Control,

ACM Computer Graphics, 22 (1988), No. 4, pp. 309-315

[4] Cary B. Phillips and Norman I. Badler, Jack: A toolkit for manipulating articulated figures,

ACM/SIGGRAPH Symposium on User Interface Software, Banff, Canada, October 1988.

[5] R. Fletcher and M. J. D. Powell, A Rapidly Convergent Descent Method for Minimization.

Computer J. , 8 (1963), pp. 163-168

[6] R. Fletcher, A New Approach to Variable Metric Algorithms, The Computer J. , 13 (1970),

pp. 317-322

[71 Donald Goldfarb, Extension of Davidon's Variable .11ftric Method to .Maximization under Lin-

ear Inequality and Equality Constraints, SIAM J. Appi. Math. 17 (1969), pp. 739-764

19

[8] Michael Girard and A. A. Maciejewski, Computational Modeling for the Computer Animation

of Legged Figures, ACM Computer Graphics, 19 (1985), No. 3, pp. 263-270

[9] Donald Goldfarb, A Family of Variable Metric Methods Derived by Variational Means, Math.

Computation, 24 (1970), pp. 23-26

[10] M. J. D. Powell, A Hybrid Method for Nonlinear Equations, in Numerical Methods for Non-

linear Algebraic Equations, Eds. , Philip Rabinowitz, Gordon and Breach Science Publisher,

1970

[11] M. J. D. Powell, Some Global Convergence Properties of a Variable Metric Algorithm for

Minimization without Exact Line Searches, Nonlinear Programming, SIAM-AMS Proc. Vol.

IX (1976), pp. 53-72

[12] Klaus Ritter, A Variable Metric Method for Linearly Constrained Minimization Problems, in

Nonlinear Programming 3, Ed. by 0. L. Mangasarian, R. R. Meyer and S. M. Robinson,

Academic Press, 1978

[13] J. B. Rosen, The Gradient Projection Method for Nonlinear Programming, Part I. Linear

Constraints, SIAM J. Appl. Math. 8 (1960), pp. 181-217

[14] D. F. Shanno, Conditioning of Quasi-Newton Methods for Function Minimization, Math. Com-

putation, 24 (1970), pp. 647-664

[15] S. Steketee and Norman I. Badler, Parametric Keyfframe Interpolation Incorporating Kinetic

Adjustment and Phrasing Control, ACM Computer Graphics, 19 (1985), No. 3, pp. 255-262

[16] Andrew Witkin. Kurt Fleischer and Alan Barr, Energy Constraints on Parameterized Models.

ACM Computer Graphics, 21 (1987), No. 4, pp. 225-232

[17] Andrew Witkin and Michael Kass, Spacetime Constraints, ACM Computer Graphics. 22

(1988), No. 4. pp. 159-168

[18] D. E. Whitney, The Mathematics of Coordinated Control of Prostheses and .lanipulators. .J.

Dynamic Systems. Measurement, and Control. Transaction ASME. 94 (1972). Series G. pp.

303-309

20

